
GEOPHYSICAL SURVEY REPORT

Land at Eight Ash Green Colchester, Essex

Client

CgMs Heritage (part of RPS)

-or

Gladman Developments Ltd

Survey Report 11661

Date

October 2017

Incorporating

GSB PROSPECTION LTD

and

STRATASCAN LTD

SUMO Services Ltd Cowburn Farm Market Street Thornton Bradford BD13 3HW T: 01274 835016 SUMO Services Ltd Vineyard House Upper Hook Road Upton upon Severn Worcestershire WR8 0SA T: 01684 592266

geophysics@sumoservices.com www.sumoservices.com

GEOPHYSICAL SURVEY REPORT

Project name: SUMO Job reference:

Land at Eight Ash Green, 11661

Colchester, Essex

21 September 2017

Client:

CgMs Heritage (part of RPS)

For:

Gladman Developments Ltd

Survey date: Report date:

23-24 August 2017 3 October 2017

Field co-ordinator: Field Team:

Joe Perry BA

Olivier Vansassenbrouck MSc

David Stockwell BA

Robert Smail PhD

Ben Arrowsmith

Job ref: 11661

Date: October 2017

Report written by: CAD illustrations by: Claire Stephens BA MA Claire Stephens BA MA

Project Manager: Report approved by:

Jon Tanner BSc MSc PCIfA Dr John Gater BSc DSc(Hon) MCIfA FSA

TABLE OF CONTENTS

1	SUMMA	RY OF RESULTS	1
2	INTROD	UCTION	1
3	METHO	OS, PROCESSING & PRESENTATION	2
4	RESULT	S	3
5	DATA APPRAISAL & CONFIDENCE ASSESSMENT		
6	CONCLUSION		4
7	REFERENCES		4
Appendix A Technical Information: Magnetometer Survey Method			
Appendix B		Technical Information: Magnetic Theory	
Appendix C		OASIS Summary	

LIST OF FIGURES

Figure 1	1:25 000	Site Location Diagram
Figure 2	1:2000	Location of Survey Areas
Figure 3	1:2000	Magnetometer Survey - Greyscale Plots
Figure 4	1:2000	Magnetometer Survey - Interpretation

DIGITAL CONTENT (Archive Data CD/DVD)

- Minimally Processed Greyscale Images and XY Trace Plots in DWG format
- Digital Copies of Report Text and Figures (both PDF and native formats)

1 SUMMARY OF RESULTS

No anomalies of archaeological interest have been identified by the survey. Most of the detected responses are ferrous in nature, relating to buried pipes, adjacent boundaries and scattered debris. A few very weak trends and isolated pit-type anomalies have been highlighted; these form no clear patterns and are likely to be natural, agricultural or modern in origin.

2 INTRODUCTION

2.1 Background synopsis

SUMO Services Ltd were commissioned to undertake a geophysical survey of an area outlined for residential development. This survey forms part of an archaeological investigation being undertaken by **CgMs Heritage (part of RPS)** on behalf of **Gladman Developments Ltd.**.

2.2 Site details

NGR / Postcode TL 932 264 / CO3 9UF

Location The site is located immediately north of Halstead Road, Eight Ash Green,

Colchester, Essex. It is bound to the north by Fiddlers Hill, to the south by Halstead Road, to the east by residential development and to the west

Job ref: 11661

Date: October 2017

by agricultural land.

OASIS Ref gsbprosp1-297300

HER/SMR ECC4051

District Colchester

Parish Eight Ash Green CP

Topography Gently sloping

Current Land Use Areas 1 & 2 – pasture; Area 3 – set aside, recently cut

Weather Fair

Geology Solid: London Clay Formation – clay, silt and sand. Superficial: Cover

sand - clay, silt and sand (BGS 2017).

Soils Boundary of Ludford Association (571x) deep, well drained loamy and

sandy soils and Wix Association (573b) deep permeable coarse loamy

soils (SSEW 1983).

Archaeology None known within study area. The HER notes cropmarks (possible

circular and rectangular features) on or adjacent to the site but their precise location is unknown and has not been confirmed by a recent review. Overall, the site is considered to have a low to moderate potential

for evidence of archaeological interest (CgMs 2017).

Survey Methods Magnetometer survey (fluxgate gradiometer)

Study Area 8 ha

2.3 Aims and Objectives

To locate and characterise any anomalies of possible archaeological interest within the study area.

3 METHODS, PROCESSING & PRESENTATION

3.1 Standards & Guidance

This report and all fieldwork have been conducted in accordance with the latest guidance documents issued by Historic England (EH 2008) (then English Heritage), the Chartered Institute for Archaeologists (ClfA 2014) and the European Archaeological Council (EAC 2016).

3.2 Survey methods

Detailed magnetic survey was chosen as an efficient and effective method of locating archaeological anomalies.

Technique	Instrument	Traverse Interval	Sample Interval
Magnetometer	Bartington Grad 601-2	1.0m	0.25m

More information regarding this technique is included in Appendix A.

3.3 Data Processing

The following basic processing steps have been carried out on the data used in this report: De-stripe; de-stagger; interpolate

3.4 Presentation of results and interpretation

The presentation of the results for each site involves a grey-scale plot of processed data. Magnetic anomalies are identified, interpreted and plotted onto the 'Interpretation' drawings. The minimally processed data are provided as a greyscale image in the Archive Data Folder with an XY trace plot in CAD format. A free viewer is available: https://viewer.autodesk.com

When interpreting the results, several factors are taken into consideration, including the nature of archaeological features being investigated and the local conditions at the site (geology, pedology, topography etc.). Anomalies are categorised by their potential origin. Where responses can be related to other existing evidence, the anomalies will be given specific categories, such as: *Abbey Wall* or *Roman Road*. Where the interpretation is based largely on the geophysical data, levels of confidence are implied, for example: *Probable*, or *Possible Archaeology*. The former is used for a confident interpretation, based on anomaly definition and/or other corroborative data such as cropmarks. Poor anomaly definition, a lack of clear patterns to the responses and an absence of other supporting data reduces confidence, hence the classification *Possible*.

Job ref: 11661

Date: October 2017

4 RESULTS

The survey is divided into three survey areas (Areas 1-3) and specific anomalies have been given numerical labels [1] [2] which appear in the text below, as well as on the Interpretation Figure(s).

Job ref: 11661

Date: October 2017

4.1 Probable / Possible Archaeology

4.1.1 No magnetic responses have been recorded that could be interpreted as being of archaeological interest.

4.2 Uncertain

- 4.2.1 A very faint linear trend [1] appears to coincide roughly with the line of a former boundary shown only on the Fordham Parish Tithe Map of 1837 (CgMs Figure 3); however, the magnetic anomaly is too weak (barely visible above the general background) to enable any firm interpretation and is therefore categorised as *Uncertain*.
- 4.2.2 Similarly inconclusive is the interpretation of anomalies [2], comprising a weak trend and a linear alignment of ferrous dipoles. They roughly follow the line of a former boundary shown on the 1837 Tithe Map and on some modern mapping (CgMs Figures 3 & 8), but not on early OS mapping or modern satellite imagery. It is unclear whether the anomalies relate directly to a former boundary or represent a section of buried pipe or drain.
- 4.2.3 The remaining *Uncertain* anomalies comprise a few isolated pit-type responses, short linear anomalies and several weak trends. A combination of agricultural, natural and modern factors is considered most likely for all of these.

4.3 Natural / Geological / Topographic

4.3.1 A few broad, weak responses in Area 1 are typical of localised natural soil variations.

4.4 Ferrous / Magnetic Disturbance

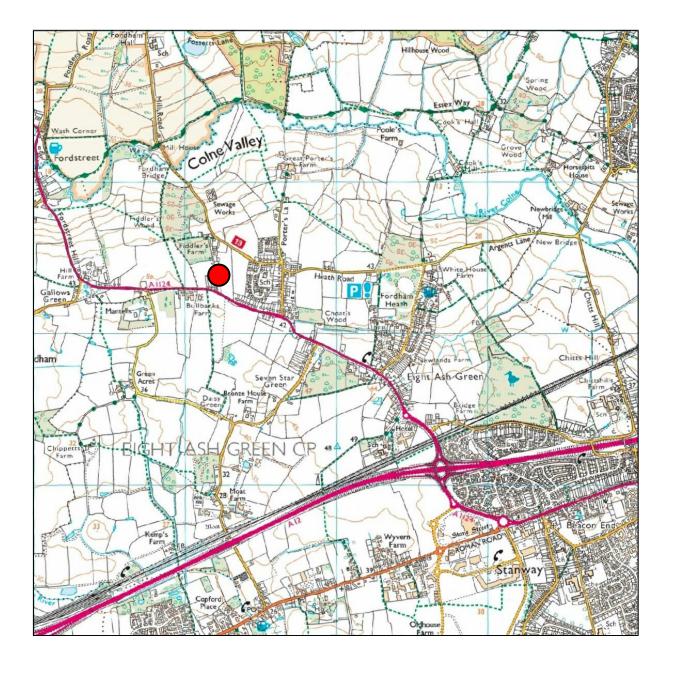
- 4.4.1 Ferrous anomalies produced by two iron/steel pipes dominate the data for Area 2 and extend into Area 3. These anomalies will have masked any weak responses, if present.
- 4.4.2 Elsewhere, bands of ferrous response at the grid edges are due to adjacent fences and other material associated with the extant field boundaries. Smaller scale ferrous anomalies ("iron spikes") are present throughout the data and their form is best illustrated in the XY trace plots. These responses are characteristic of small pieces of ferrous debris (or brick / tile) in the topsoil and are commonly assigned a modern origin. Only the most prominent of these are highlighted on the interpretation diagram.

5 DATA APPRAISAL & CONFIDENCE ASSESSMENT

5.1 Historic England guidelines (EH 2008) Table 4 states that the average magnetic response on London Clay is poor / variable and superficial deposits of Cover sand are also expected to give uncertain to poor responses. In this instance, the masking effects of widespread ferrous anomalies in the central part of the site is also a factor for consideration. While peripheral or short lived archaeological features (e.g. pits or field systems) might not have sufficient magnetic enhancement to be detectable, one would expect major features (e.g. intensive settlement sites) to yield some detectable magnetic responses.

6 CONCLUSION

No responses of probable or possible archaeological interest have been detected by the survey. Ferrous responses from two pipes dominate much of the central portion of the study area. Away from this disturbance, most of the non-ferrous responses highlighted by the survey tend to be very weak / barely visible above background levels. Given the geology/soil conditions (see section 5 above), close attention was paid to these but none form clear patterns that might suggest archaeological features.


7 REFERENCES

BGS 2017	British Geological Survey, Geology of Britain viewer [accessed 02/10/2017] website: (http://www.bgs.ac.uk/opengeoscience/home.html?Accordion1=1#maps)
CgMs 2017	Land North of Halstead Road, Eight Ash Green, Colchester: Archaeological Desk-Based Assessment. CgMs Consulting Ltd, January 2017, unpublished.
CIfA 2014	Standard and Guidance for Archaeological Geophysical Survey. Amended 2016. CIfA Guidance note. Chartered Institute for Archaeologists, Reading http://www.archaeologists.net/sites/default/files/CIfAS%26GGeophysics_2.pdf
EAC 2016	EAC Guidelines for the Use of Geophysics in Archaeology, European Archaeological Council, Guidelines 2.
EH 2008	Geophysical Survey in Archaeological Field Evaluation. English Heritage, Swindon https://content.historicengland.org.uk/images-books/publications/geophysical-survey-in-archaeological-field-evaluation/geophysics-guidelines.pdf/
SSEW 1983	Soils of England and Wales. Sheet 6, South East England. Soil Survey of England and Wales, Harpenden.

Job ref: 11661

Date: October 2017

Site Location

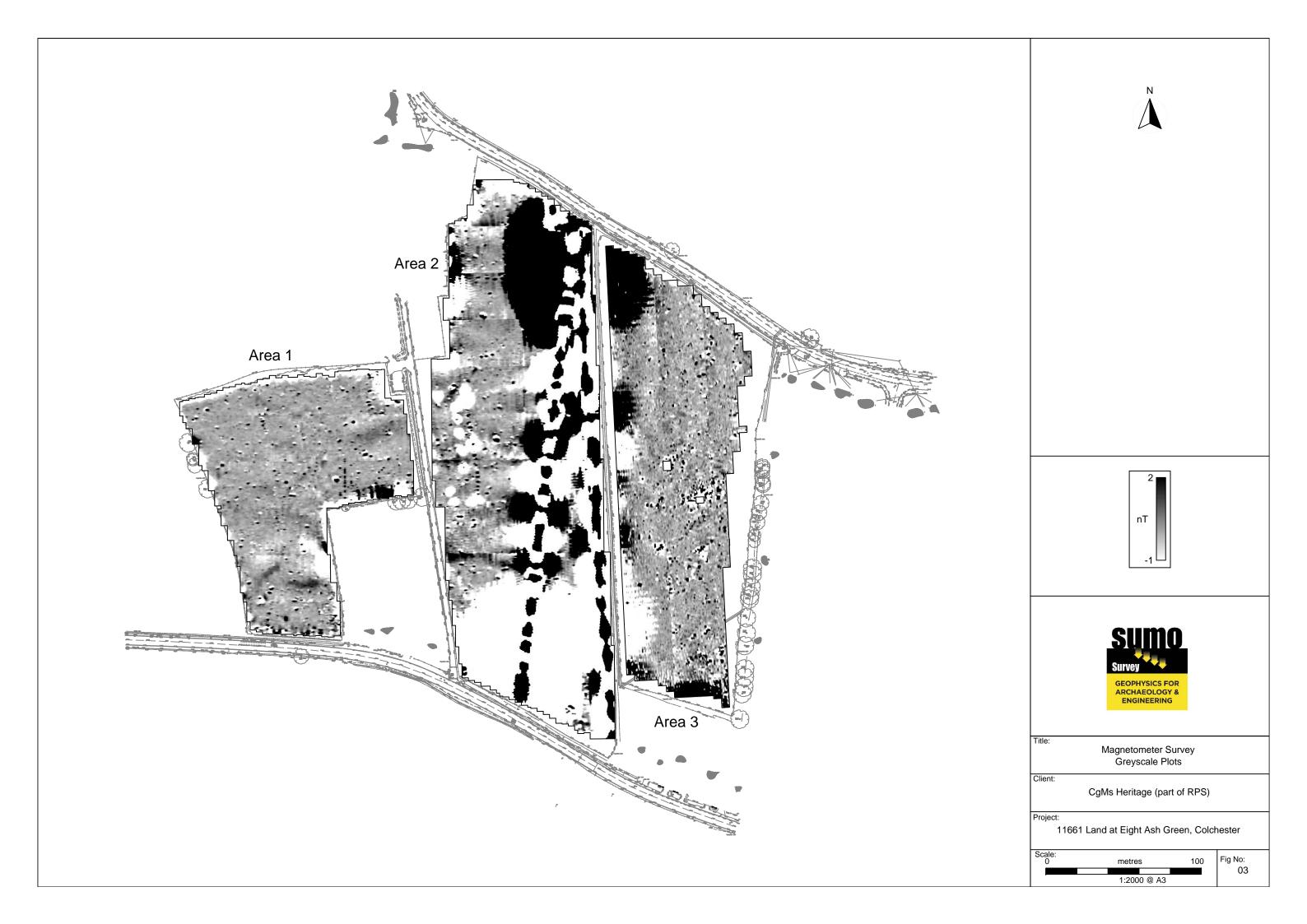
Reproduced from Ordnance Survey's 1:25 000 map of 1998 with the permission of the controller of Her Majesty's Stationery Office.

Crown Copyright reserved. Licence No: AL 50125A

Title

Site Location Diagram

Client:


CgMs Heritage (part of RPS)

Project:

11661 Land at Eight Ash Green, Colchester

Scale: 0 metres 1250 Fig No: 01

Appendix A - Technical Information: Magnetometer Survey Method

Grid Positioning

For hand held gradiometers the location of the survey grids has been plotted together with the referencing information. Grids were set out using a Trimble R8 Real Time Kinematic (RTK) VRS Now GNSS GPS system.

An RTK GPS (Real-time Kinematic Global Positioning System) can locate a point on the ground to a far greater accuracy than a standard GPS unit. A standard GPS suffers from errors created by satellite orbit errors, clock errors and atmospheric interference, resulting in an accuracy of 5m-10m. An RTK system uses a single base station receiver and a number of mobile units. The base station rebroadcasts the phase of the carrier it measured, and the mobile units compare their own phase measurements with those they received from the base station. This results in an accuracy of around 0.01m.

Technique	Instrument	Traverse Interval	Sample Interval
Magnetometer	Bartington Grad 601-2	1m	0.25m

Instrumentation: Bartington *Grad* 601-2

Bartington instruments operate in a gradiometer configuration which comprises fluxgate sensors mounted vertically, set 1.0m apart. The fluxgate gradiometer suppresses any diurnal or regional effects. The instruments are carried, or cart mounted, with the bottom sensor approximately 0.1-0.3m from the ground surface. At each survey station, the difference in the magnetic field between the two fluxgates is measured in nanoTesla (nT). The sensitivity of the instrument can be adjusted; for most archaeological surveys the most sensitive range (0.1nT) is used. Generally, features up to 1m deep may be detected by this method, though strongly magnetic objects may be visible at greater depths. The Bartington instrument can collect two lines of data per traverse with gradiometer units mounted laterally with a separation of 1.0m. The readings are logged consecutively into the data logger which in turn is daily down-loaded into a portable computer whilst on site. At the end of each site survey, data is transferred to the office for processing and presentation.

Data Processing

Zero Mean Traverse This process sets the background mean of each traverse within each grid to zero. The operation removes striping effects and edge discontinuities over the whole of the data set.

Step Correction (De-stagger)

When gradiometer data are collected in 'zig-zag' fashion, stepping errors can sometimes arise. These occur because of a slight difference in the speed of walking on the forward and reverse traverses. The result is a staggered effect in the data, which is particularly noticeable on linear anomalies. This process corrects these errors.

Display

Greyscale/ Colourscale Plot This format divides a given range of readings into a set number of classes. Each class is represented by a specific shade of grey, the intensity increasing with value. All values above the given range are allocated the same shade (maximum intensity); similarly, all values below the given range are represented by the minimum intensity shade. Similar plots can be produced in colour, either using a wide range of colours or by selecting two or three colours to represent positive and negative values. The assigned range (plotting levels) can be adjusted to emphasise different anomalies in the data-set.

Interpretation Categories

In certain circumstances (usually when there is corroborative evidence from desk-based or excavation data) very specific interpretations can be assigned to magnetic anomalies (for example, Roman Road, Wall, etc.) and where appropriate, such interpretations will be applied. The list below outlines the generic categories commonly used in the interpretation of the results.

Archaeology / Probable Archaeology

This term is used when the form, nature and pattern of the responses are clearly or very probably archaeological and /or if corroborative evidence is available. These anomalies, whilst considered anthropogenic, could be of any age.

Possible

These anomalies exhibit either weak signal strength and / or poor definition, or form incomplete archaeological patterns, thereby reducing the level of confidence in the interpretation. Although the archaeological interpretation is favoured, they may be the result of variable soil depth, plough damage or even aliasing as a result of data collection orientation.

Industrial /

Strong magnetic anomalies that, due to their shape and form or the context in which they are found, suggest the presence of kilns, ovens, corn dryers, metalworking areas or hearths. It should be noted that in many instances modern ferrous material can produce similar magnetic anomalies.

Former Field

Anomalies that correspond to former boundaries indicated on historic mapping, or Boundary (probable which are clearly a continuation of existing land divisions. Possible denotes less confidence where the anomaly may not be shown on historic mapping but nevertheless the anomaly displays all the characteristics of a field boundary.

Ridge & Furrow Parallel linear anomalies whose broad spacing suggests ridge and furrow cultivation. In some cases, the response may be the result of more recent agricultural activity.

Parallel linear anomalies or trends with a narrower spacing, sometimes aligned with existing boundaries, indicating more recent cultivation regimes.

Land Drain Weakly magnetic linear anomalies, guite often appearing in series forming parallel and herringbone patterns. Smaller drains may lead and empty into larger diameter pipes, which in turn usually lead to local streams and ponds. These are indicative of clay fired land drains.

> These responses form clear patterns in geographical zones where natural variations are known to produce significant magnetic distortions.

Magnetic Disturbance

Broad zones of strong dipolar anomalies, commonly found in places where modern ferrous or fired materials (e.g. brick rubble) are present.

Magnetically strong anomalies, usually forming linear features are indicative of ferrous pipes/cables. Sometimes other materials (e.g. pvc) or the fill of the trench can cause weaker magnetic responses which can be identified from their uniform linearity.

This type of response is associated with ferrous material and may result from small items in the topsoil, larger buried objects such as pipes, or above ground features such as fence lines or pylons. Ferrous responses are usually regarded as modern. Individual burnt stones, fired bricks or igneous rocks can produce responses similar to ferrous material.

Anomalies which stand out from the background magnetic variation, yet whose form and lack of patterning gives little clue as to their origin. Often the characteristics and distribution of the responses straddle the categories of Possible Archaeology / Natural or (in the case of linear responses) Possible Archaeology / Agriculture; occasionally they are simply of an unusual form.

Where appropriate some anomalies will be further classified according to their form (positive or negative) and relative strength and coherence (trend: weak and poorly defined).

© SUMO Survey: Geophysics for Archaeology and Engineering

Archaeology

Burnt-Fired

& possible)

Agriculture (ploughing)

Natural

Ferrous

Service

Uncertain Origin

Appendix B - Technical Information: Magnetic Theory

Detailed magnetic survey can be used to effectively define areas of past human activity by mapping spatial variation and contrast in the magnetic properties of soil, subsoil and bedrock. Although the changes in the magnetic field resulting from differing features in the soil are usually weak, changes as small as 0.1 nanoTeslas (nT) in an overall field strength of 48,000 (nT), can be accurately detected.

Weakly magnetic iron minerals are always present within the soil and areas of enhancement relate to increases in *magnetic susceptibility* and permanently magnetised *thermoremanent* material.

Magnetic susceptibility relates to the induced magnetism of a material when in the presence of a magnetic field. This magnetism can be considered as effectively permanent as it exists within the Earth's magnetic field. Magnetic susceptibility can become enhanced due to burning and complex biological or fermentation processes.

Thermoremanence is a permanent magnetism acquired by iron minerals that, after heating to a specific temperature known as the Curie Point, are effectively demagnetised followed by re-magnetisation by the Earth's magnetic field on cooling. Thermoremanent archaeological features can include hearths and kilns; material such as brick and tile may be magnetised through the same process.

Silting and deliberate infilling of ditches and pits with magnetically enhanced soil creates a relative contrast against the much lower levels of magnetism within the subsoil into which the feature is cut. Systematic mapping of magnetic anomalies will produce linear and discrete areas of enhancement allowing assessment and characterisation of subsurface features. Material such as subsoil and non-magnetic bedrock used to create former earthworks and walls may be mapped as areas of lower enhancement compared to surrounding soils.

Magnetic survey is carried out using a fluxgate gradiometer which is a passive instrument consisting of two sensors mounted vertically 1m apart. The instrument is carried about 30cm above the ground surface and the top sensor measures the Earth's magnetic field whilst the lower sensor measures the same field but is also more affected by any localised buried feature. The difference between the two sensors will relate to the strength of a magnetic field created by this feature, if no field is present the difference will be close to zero as the magnetic field measured by both sensors will be the same.

Factors affecting the magnetic survey may include soil type, local geology, previous human activity and disturbance from modern services.

OASIS DATA COLLECTION FORM: England

List of Projects | Manage Projects | Search Projects | New project | Change your details | HER coverage | Change country | Log out

Printable version

OASIS ID: gsbprosp1-297300

Project details

Project name Land North of Halstead Road, Eight Ash Green, Colchester

Short description of the project Geophysical (magnetometer) survey on 8ha of land at Eight Ash Green,

Colchester.

Project dates Start: 23-08-2017 End: 21-09-2017

Previous/future work Not known / Not known
Any associated project reference ECC4051 - HER event no.

codes

Type of project Field evaluation

Site status None

Current Land use Other 15 - Other

Monument type NONE None

Monument type NONE None

Significant Finds NONE None

Significant Finds NONE None

Methods & techniques "Geophysical Survey"

Development type Not recorded

Prompt National Planning Policy Framework - NPPF

Position in the planning process Not known / Not recorded

Solid geology LONDON CLAY

Drift geology (other) Cover sand - clay, silt and sand

Techniques Magnetometry

Project location

Country England

Site location ESSEX COLCHESTER EIGHT ASH GREEN Land North of Halstead

Road, Eight Ash

Postcode CO3 9UF Study area 8 Hectares

Site coordinates TL 932 264 51.902079722452 0.808674090164 51 54 07 N 000 48 31 E

Point

Project creators

Name of Organisation Sumo Geophysics

Project brief originator Consultant

Project design originator Sumo Geophsyics
Project director/manager Sumo Geophysics
Project supervisor Sumo Geophysics

Type of sponsor/funding body Developer
Name of sponsor/funding body Not known

Project archives

Physical Archive Exists? No

Digital Archive recipient Sumo Geophysics

Digital Contents "Survey"

Digital Media available "Geophysics"

Paper Archive recipient Sumo Geophsyics

Paper Contents "Survey"

Paper Media available "Drawing", "Report", "Survey "


Entered by Sumo Geophysics (info@gsbsumo.com)

Entered on 2 October 2017

OASIS:

Please e-mail Historic England for OASIS help and advice

© ADS 1996-2012 Created by Jo Gilham and Jen Mitcham, email Last modified Wednesday 9 May 2012 Cite only: http://www.oasis.ac.uk/form/print.cfm for this page

- Laser Scanning
- Archaeological Geophysical Measured Building Topographic

 - TopographicUtility Mapping